Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.050
Filtrar
1.
J Virol ; 98(3): e0183823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426726

RESUMO

Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE: Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.


Assuntos
Infecções por Henipavirus , Henipavirus , Receptores Virais , Humanos , Aminoácidos/genética , Anticorpos Monoclonais/metabolismo , Proteínas de Transporte/metabolismo , Efrina-B3/genética , Efrina-B3/química , Efrina-B3/metabolismo , Epitopos/genética , Epitopos/metabolismo , Gana , Vírus Hendra/metabolismo , Henipavirus/classificação , Henipavirus/genética , Henipavirus/metabolismo , Mutagênese , Vírus Nipah/metabolismo , Proteínas do Envelope Viral/genética , Internalização do Vírus , Receptores Virais/metabolismo
2.
J Virol ; 98(4): e0177323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530012

RESUMO

Dengue vaccine candidates have been shown to improve vaccine safety and efficacy by altering the residues or accessibility of the fusion loop on the virus envelope protein domain II (DIIFL) in an ex vivo animal study. The current study aimed to comprehensively investigate the impact of DIIFL mutations on the antigenicity, immunogenicity, and protective efficacy of Japanese encephalitis virus (JEV) virus-like particles (VLPs) in mice. We found the DIIFL G106K/L107D (KD) and W101G/G106K/L107D (GKD) mutations altered the binding activity of JEV VLP to cross-reactive monoclonal antibodies but had no effect on their ability to elicit total IgG antibodies in mice. However, JEV VLPs with KD or GKD mutations induced significantly less neutralizing antibodies against JEV. Only 46% and 31% of the KD and GKD VLPs-immunized mice survived compared to 100% of the wild-type (WT) VLP-immunized mice after a lethal JEV challenge. In passive protection experiments, naïve mice that received sera from WT VLP-immunized mice exhibited a significantly higher survival rate of 46.7% compared to those receiving sera from KD VLP- and GKD VLP-immunized mice (6.7% and 0%, respectively). This study demonstrated that JEV DIIFL is crucial for eliciting potently neutralizing antibodies and protective immunity against JEV. IMPORTANCE: Introduction of mutations into the fusion loop is one potential strategy for generating safe dengue and Zika vaccines by reducing the risk of severe dengue following subsequent infections, and for constructing live-attenuated vaccine candidates against newly emerging Japanese encephalitis virus (JEV) or Japanese encephalitis (JE) serocomplex virus. The monoclonal antibody studies indicated the fusion loop of JE serocomplex viruses primarily comprised non-neutralizing epitopes. However, the present study demonstrates that the JEV fusion loop plays a critical role in eliciting protective immunity in mice. Modifications to the fusion loop of JE serocomplex viruses might negatively affect vaccine efficacy compared to dengue and zika serocomplex viruses. Further studies are required to assess the impact of mutant fusion loop encoded by commonly used JEV vaccine strains on vaccine efficacy or safety after subsequent dengue virus infection.


Assuntos
Dengue , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Vacinas contra Encefalite Japonesa , Infecção por Zika virus , Zika virus , Animais , Camundongos , Vírus da Encefalite Japonesa (Espécie)/genética , Proteínas do Envelope Viral/genética , Epitopos , Aminoácidos , Vacinas contra Encefalite Japonesa/genética , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
Immunity ; 57(4): 890-903.e6, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518779

RESUMO

The early appearance of broadly neutralizing antibodies (bNAbs) in serum is associated with spontaneous hepatitis C virus (HCV) clearance, but to date, the majority of bNAbs have been isolated from chronically infected donors. Most of these bNAbs use the VH1-69 gene segment and target the envelope glycoprotein E2 front layer. Here, we performed longitudinal B cell receptor (BCR) repertoire analysis on an elite neutralizer who spontaneously cleared multiple HCV infections. We isolated 10,680 E2-reactive B cells, performed BCR sequencing, characterized monoclonal B cell cultures, and isolated bNAbs. In contrast to what has been seen in chronically infected donors, the bNAbs used a variety of VH genes and targeted at least three distinct E2 antigenic sites, including sites previously thought to be non-neutralizing. Diverse front-layer-reactive bNAb lineages evolved convergently, acquiring breadth-enhancing somatic mutations. These findings demonstrate that HCV clearance-associated bNAbs are genetically diverse and bind distinct antigenic sites that should be the target of vaccine-induced bNAbs.


Assuntos
Hepacivirus , Hepatite C , Humanos , Anticorpos Amplamente Neutralizantes , Epitopos , Anticorpos Neutralizantes , Proteínas do Envelope Viral/genética
4.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471041

RESUMO

Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Superinfecção , Humanos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Regulação para Baixo , Herpesvirus Humano 1/fisiologia , Queratinócitos , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética
5.
mBio ; 15(3): e0237323, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38334805

RESUMO

Rubella virus (RuV) is an enveloped plus-sense RNA virus and a member of the Rubivirus genus. RuV infection in pregnant women can lead to miscarriage or an array of severe birth defects known as congenital rubella syndrome. Novel rubiviruses were recently discovered in various mammals, highlighting the spillover potential of other rubiviruses to humans. Many features of the rubivirus infection cycle remain unexplored. To promote the study of rubivirus biology, here, we generated replication-competent recombinant VSV-RuV (rVSV-RuV) encoding the RuV transmembrane glycoproteins E2 and E1. Sequencing of rVSV-RuV showed that the RuV glycoproteins acquired a single-point mutation W448R in the E1 transmembrane domain. The E1 W448R mutation did not detectably alter the intracellular expression, processing, glycosylation, colocalization, or dimerization of the E2 and E1 glycoproteins. Nonetheless, the mutation enhanced the incorporation of RuV E2/E1 into VSV particles, which bud from the plasma membrane rather than the RuV budding site in the Golgi. Neutralization by E1 antibodies, calcium dependence, and cell tropism were comparable between WT-RuV and either rVSV-RuV or RuV containing the E1 W448R mutation. However, the E1 W448R mutation strongly shifted the threshold for the acid pH-triggered virus fusion reaction, from pH 6.2 for the WT RuV to pH 5.5 for the mutant. These results suggest that the increased resistance of the mutant RuV E1 to acidic pH promotes the ability of viral envelope proteins to generate infectious rVSV and provide insights into the regulation of RuV fusion during virus entry and exit.IMPORTANCERubella virus (RuV) infection in pregnant women can cause miscarriage or severe fetal birth defects. While a highly effective vaccine has been developed, RuV cases are still a significant problem in areas with inadequate vaccine coverage. In addition, related viruses have recently been discovered in mammals, such as bats and mice, leading to concerns about potential virus spillover to humans. To facilitate studies of RuV biology, here, we generated and characterized a replication-competent vesicular stomatitis virus encoding the RuV glycoproteins (rVSV-RuV). Sequence analysis of rVSV-RuV identified a single-point mutation in the transmembrane region of the E1 glycoprotein. While the overall properties of rVSV-RuV are similar to those of WT-RuV, the mutation caused a marked shift in the pH dependence of virus membrane fusion. Together, our studies of rVSV-RuV and the identified W448R mutation expand our understanding of rubivirus biology and provide new tools for its study.


Assuntos
Aborto Espontâneo , Vacinas , Estomatite Vesicular , Humanos , Feminino , Gravidez , Animais , Camundongos , Vírus da Rubéola/metabolismo , Mutação Puntual , Glicoproteínas/genética , Proteínas do Envelope Viral/genética , Vesiculovirus/genética , Mamíferos/metabolismo
6.
Methods Mol Biol ; 2762: 3-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315356

RESUMO

Hantaviruses, are rodent-borne viruses found worldwide that are transmitted to humans through inhalation of contaminated excreta. They can cause a renal or a pulmonary syndrome, depending on the virus, and no effective treatment is currently available for either of these diseases. Hantaviral particles are covered by a protein lattice composed of two glycoproteins (Gn and Gc) that mediate adsorption to target cells and fusion with endosomal membranes, making them prime targets for neutralizing antibodies. Here we present the methodology to produce soluble recombinant glycoproteins in different conformations, either alone or as a stabilized Gn/Gc complex, using stably transfected Drosophila S2 cells.


Assuntos
Orthohantavírus , Vírus de RNA , Humanos , Animais , Drosophila melanogaster/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Glicoproteínas/metabolismo
7.
Viruses ; 16(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38400027

RESUMO

Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4 °C and also entered cells more efficiently at 15 °C, relative to wild type HSV-1 strain KOS virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type KOS. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type KOS gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the KOS gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.


Assuntos
Herpesvirus Humano 1 , Humanos , Animais , Chlorocebus aethiops , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Fusão Celular , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células Vero , Internalização do Vírus , Fusão de Membrana
8.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301907

RESUMO

Dengue virus (DENV) envelope protein plays crucial role in virus entry and maturation of virus during infection. Maturation of DENV occurs in the trans Golgi network at slightly acidic pH which is close to pKa of histidine. When exposed to the acidic environment of the late secretory pathway, dengue virus particles go through a significant conformational change, whereby interactions of structural proteins envelope (E) and prM proteins are reorganised and enable furin protease to cleave prM resulting in mature virus. In order to study the role of histidine of E protein in DENV maturation, we mutated 7 conserved histidine residues of envelope protein and assessed the percent of budding using viral like particle (VLP) system. Histidine mutants; H144A, H244A, H261A and H282A severely disrupted VLP formation without any significant change in expression in cell and its oligomerization ability. Treatment with acidotropic amine reversed the defect for all 4 mutants suggesting that these histidines could be involved in maturation and release. Over expression of capsid protein slightly enhanced VLP release of H244A and H261A. Similarly, furin over expression increased VLP release of these mutants. Co-immunoprecipitation studies revealed that prM and E interaction is lost for H244A, H261A and H282A mutants at acidic pH but not at neutral pH indicating that they could be involved in histidine switch during maturation at acidic pH. Detailed analysis of the mutants could provide novel insights on the interplay of envelop protein during maturation and aid in target for drug development.


Assuntos
Dengue , Proteínas do Envelope Viral , Humanos , Proteínas do Envelope Viral/genética , Furina/genética , Histidina/genética , Mutação
9.
PLoS Pathog ; 20(2): e1011928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324558

RESUMO

The subgroup J avian leukosis virus (ALV-J), a retrovirus, uses its gp85 protein to bind to the receptor, the chicken sodium hydrogen exchanger isoform 1 (chNHE1), facilitating viral invasion. ALV-J is the main epidemic subgroup and shows noteworthy mutations within the receptor-binding domain (RBD) region of gp85, especially in ALV-J layer strains in China. However, the implications of these mutations on viral replication and transmission remain elusive. In this study, the ALV-J layer strain JL08CH3-1 exhibited a more robust replication ability than the prototype strain HPRS103, which is related to variations in the gp85 protein. Notably, the gp85 of JL08CH3-1 demonstrated a heightened binding capacity to chNHE1 compared to HPRS103-gp85 binding. Furthermore, we showed that the specific N123I mutation within gp85 contributed to the enhanced binding capacity of the gp85 protein to chNHE1. Structural analysis indicated that the N123I mutation primarily enhanced the stability of gp85, expanded the interaction interface, and increased the number of hydrogen bonds at the interaction interface to increase the binding capacity between gp85 and chNHE1. We found that the N123I mutation not only improved the viral replication ability of ALV-J but also promoted viral shedding in vivo. These comprehensive data underscore the notion that the N123I mutation increases receptor binding and intensifies viral replication.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Animais , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/química , Mutação , Galinhas , Isoformas de Proteínas/genética , Proteínas do Envelope Viral/genética
10.
J Med Virol ; 96(2): e29445, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299743

RESUMO

Membrane-associated RING-CH (MARCH) family proteins were recently reported to inhibit viral replication through multiple modes. Previous work showed that human MARCH8 blocked Ebola virus (EBOV) glycoprotein (GP) maturation. Our study here demonstrates that human MARCH1 and MARCH2 share a similar pattern to MARCH8 in restricting EBOV GP-pseudotyped viral infection. Human MARCH1 and MARCH2 retain EBOV GP at the trans-Golgi network, reduce its cell surface display, and impair EBOV GP-pseudotyped virions infectivity. Furthermore, we uncover that the host proprotein convertase furin could interact with human MARCH1/2 and EBOV GP intracellularly. Importantly, the furin P domain is verified to be recognized by MARCH1/2/8, which is critical for their blocking activities. Besides, bovine MARCH2 and murine MARCH1 also impair EBOV GP proteolytic processing. Altogether, our findings confirm that MARCH1/2 proteins of different mammalian origins showed a relatively conserved feature in blocking EBOV GP cleavage, which could provide clues for subsequent MARCHs antiviral studies and may facilitate the development of novel strategies to antagonize enveloped virus infection.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Bovinos , Humanos , Camundongos , Linhagem Celular , Furina/metabolismo , Glicoproteínas , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
11.
Front Immunol ; 15: 1307546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361945

RESUMO

Zika virus (ZIKV) is a re-emerging pathogen with high morbidity associated to congenital infection. Despite the scientific advances since the last outbreak in the Americas, there are no approved specific treatment or vaccines. As the development of an effective prophylactic approach remains unaddressed, DNA vaccines surge as a powerful and attractive candidate due to the efficacy of sequence optimization in achieving strong immune response. In this study, we developed four DNA vaccine constructs encoding the ZIKV prM/M (pre-membrane/membrane) and E (envelope) proteins in conjunction with molecular adjuvants. The DNA vaccine candidate (called ZK_ΔSTP), where the entire membrane-anchoring regions were completely removed, was far more immunogenic compared to their counterparts. Furthermore, inclusion of the tPA-SP leader sequence led to high expression and secretion of the target vaccine antigens, therefore contributing to adequate B cell stimulation. The ZK_ΔSTP vaccine induced high cellular and humoral response in C57BL/6 adult mice, which included high neutralizing antibody titers and the generation of germinal center B cells. Administration of ZK-ΔSTP incorporating aluminum hydroxide (Alum) adjuvant led to sustained neutralizing response. In consistency with the high and long-term protective response, ZK_ΔSTP+Alum protected adult mice upon viral challenge. Collectively, the ZK_ΔSTP+Alum vaccine formulation advances the understanding of the requirements for a successful and protective vaccine against flaviviruses and is worthy of further translational studies.


Assuntos
Compostos de Alúmen , Vacinas de DNA , Vacinas Virais , Infecção por Zika virus , Zika virus , Animais , Camundongos , Zika virus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas do Envelope Viral/genética , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
12.
Immunity ; 57(1): 40-51.e5, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38171362

RESUMO

Individuals who clear primary hepatitis C virus (HCV) infections clear subsequent reinfections more than 80% of the time, but the mechanisms are poorly defined. Here, we used HCV variants and plasma from individuals with repeated clearance to characterize longitudinal changes in envelope glycoprotein E2 sequences, function, and neutralizing antibody (NAb) resistance. Clearance of infection was associated with early selection of viruses with NAb resistance substitutions that also reduced E2 binding to CD81, the primary HCV receptor. Later, peri-clearance plasma samples regained neutralizing capacity against these variants. We identified a subset of broadly NAbs (bNAbs) for which these loss-of-fitness substitutions conferred resistance to unmutated bNAb ancestors but increased sensitivity to mature bNAbs. These data demonstrate a mechanism by which neutralizing antibodies contribute to repeated immune-mediated HCV clearance, identifying specific bNAbs that exploit fundamental vulnerabilities in E2. The induction of bNAbs with these specificities should be a goal of HCV vaccine development.


Assuntos
Anticorpos Neutralizantes , Hepatite C , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-Hepatite C/química , Hepacivirus , Proteínas do Envelope Viral/genética
13.
J Microbiol Biotechnol ; 34(2): 280-288, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247210

RESUMO

The fusogenic membrane glycoprotein (FMG) derived from the human endogenous retrovirus-W (HERV-W) exhibits fusogenic properties, making it a promising candidate for cancer gene therapy. When cells are transfected with HERV-W FMG, they can fuse with neighboring cells expressing the receptor, resulting in the formation of syncytia. These syncytia eventually undergo cell death within a few days. In addition, it has been observed that an HERV-W env mutant, which is truncated after amino acid 483, displays increased fusogenicity compared to the wild-type HERV-W env. In this study, we observed syncytium formation upon transfection of HeLa and TE671 human cancer cells with plasmids containing the HERV-W 483 gene. To explore the potential of a semi-replication-competent retroviral (s-RCR) vector encoding HERV-W 483 for FMG-mediated cancer gene therapy, we developed two replication-defective retroviral vectors: a gag-pol vector encoding HERV-W 483 (MoMLV-HERV-W 483) and an env vector encoding VSV-G (pCLXSN-VSV-G-EGFP). When MoMLV-HERV-W 483 and pCLXSN-VSV-G-EGFP were co-transfected into HEK293T cells to produce the s-RCR vector, gradual syncytium formation was observed. However, the titers of the s-RCR virus remained consistently low. To enhance gene transfer efficiency, we constructed an RCR vector encoding HERV-W 483 (MoMLV-10A1-HERV-W 483), which demonstrated replication ability in HEK293T cells. Infection of A549 and HT1080 human cancer cell lines with this RCR vector induced syncytium formation and subsequent cell death. Consequently, both the s-RCR vector and RCR encoding HERV-W 483 hold promise as valuable tools for cancer gene therapy.


Assuntos
Retrovirus Endógenos , Neoplasias , Humanos , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Proteínas do Envelope Viral/genética , Células HEK293 , Vetores Genéticos/genética , Neoplasias/genética , Neoplasias/terapia , Glicoproteínas de Membrana/genética , Genes Neoplásicos
14.
Gene Ther ; 31(3-4): 187-194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278988

RESUMO

Baculoviruses have shown great potential as gene delivery vectors in mammals, although their effectiveness in transferring genes varies across different cell lines. A widely employed strategy to improve transduction efficiency is the pseudotyping of viral vectors. In this study, we aimed to develop a stable Sf9 insect cell line that inducibly expresses the G-protein of the vesicular stomatitis virus to pseudotype budded baculoviruses. It was obtained by inserting the VSV-G gene under the control of the very strong and infection-inducible pXXL promoter and was subsequently diluted to establish oligoclonal lines, which were selected by the fusogenic properties of VSV-G and its expression levels in infected cells and purified budded virions. Next, to enhance the performance of the cell line, the infection conditions under which functional pseudotyped baculoviruses are obtained were optimized. Finally, different baculoviruses were pseudotyped and the expression of the transgene was quantified in mammalian cells of diverse origins using flow cytometry. The transduction efficiency of pseudotyped baculovirus consistently increased across all tested mammalian cell lines compared with control viruses. These findings demonstrate the feasibility and advantages of improving gene delivery performance without the need to insert the pseudotyping gene into the baculoviral genomes.


Assuntos
Baculoviridae , Técnicas de Transferência de Genes , Animais , Baculoviridae/genética , Linhagem Celular , Terapia Genética , Regiões Promotoras Genéticas , Vetores Genéticos/genética , Transdução Genética , Proteínas do Envelope Viral/genética , Mamíferos/genética , Mamíferos/metabolismo
15.
Viruses ; 16(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257790

RESUMO

One-third of the nine WHO shortlisted pathogens prioritized for research and development in public health emergencies belong to the Bunyavirales order. Several Bunyavirales species carry an NSm protein that acts as a virulence factor. We predicted the structures of these NSm proteins and unexpectedly found that in two families, their cytosolic domain was inferred to have a similar fold to that of the cytosolic domain of the viral envelope-forming glycoprotein N (Gncyto) encoded on the same genome fragment. We show that although the sequence identity between the NSmcyto and the Gncyto domains is low, the conservation of the two zinc finger-forming CysCysHisCys motifs explains the predicted structural conservation. Importantly, our predictions provide a first glimpse into the long-unknown structure of NSm. Also, these predictions suggest that NSm is the result of a gene duplication event in the Bunyavirales Nairoviridae and Peribunyaviridae families and that such events may be common in the recent evolutionary history of RNA viruses.


Assuntos
Duplicação Gênica , Vírus de RNA , Humanos , Evolução Biológica , Saúde Pública , Proteínas do Envelope Viral/genética , Fatores de Virulência/genética
16.
J Biomed Sci ; 31(1): 8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229040

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) has reemerged as a major public health concern, causing chikungunya fever with increasing cases and neurological complications. METHODS: In the present study, we investigated a low-passage human isolate of the East/ Central/South African (ECSA) lineage of CHIKV strain LK(EH)CH6708, which exhibited a mix of small and large viral plaques. The small and large plaque variants were isolated and designated as CHIKV-SP and CHIKV-BP, respectively. CHIKV-SP and CHIKV-BP were characterized in vitro and in vivo to compare their virus production and virulence. Additionally, whole viral genome analysis and reverse genetics were employed to identify genomic virulence factors. RESULTS: CHIKV-SP demonstrated lower virus production in mammalian cells and attenuated virulence in a murine model. On the other hand, CHIKV-BP induced higher pro-inflammatory cytokine levels, compromised the integrity of the blood-brain barrier, and led to astrocyte infection in mouse brains. Furthermore, the CHIKV-SP variant had limited transmission potential in Aedes albopictus mosquitoes, likely due to restricted dissemination. Whole viral genome analysis revealed multiple genetic mutations in the CHIKV-SP variant, including a Glycine (G) to Arginine (R) mutation at position 55 in the viral E2 glycoprotein. Reverse genetics experiments confirmed that the E2-G55R mutation alone was sufficient to reduce virus production in vitro and virulence in mice. CONCLUSIONS: These findings highlight the attenuating effects of the E2-G55R mutation on CHIKV pathogenicity and neurovirulence and emphasize the importance of monitoring this mutation in natural infections.


Assuntos
Aedes , Vírus Chikungunya , Humanos , Camundongos , Animais , Vírus Chikungunya/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Aminoácidos , Mutação , Mamíferos
17.
Viruses ; 16(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275957

RESUMO

Classical swine fever (CSF) has been eradicated from Western and Central Europe but remains endemic in parts of Central and South America, Asia, and the Caribbean. CSF virus (CSFV) has been endemic in Cuba since 1993, most likely following an escape of the highly virulent Margarita/1958 strain. In recent years, chronic and persistent infections with low-virulent CSFV have been observed. Amino acid substitutions located in immunodominant epitopes of the envelope glycoprotein E2 of the attenuated isolates were attributed to positive selection due to suboptimal vaccination and control. To obtain a complete picture of the mutations involved in attenuation, we applied forward and reverse genetics using the evolutionary-related low-virulent CSFV/Pinar del Rio (CSF1058)/2010 (PdR) and highly virulent Margarita/1958 isolates. Sequence comparison of the two viruses recovered from experimental infections in pigs revealed 40 amino acid differences. Interestingly, the amino acid substitutions clustered in E2 and the NS5A and NS5B proteins. A long poly-uridine sequence was identified previously in the 3' untranslated region (UTR) of PdR. We constructed functional cDNA clones of the PdR and Margarita strains and generated eight recombinant viruses by introducing single or multiple gene fragments from Margarita into the PdR backbone. All chimeric viruses had comparable replication characteristics in porcine monocyte-derived macrophages. Recombinant PdR viruses carrying either E2 or NS5A/NS5B of Margarita, with 36 or 5 uridines in the 3'UTR, remained low virulent in 3-month-old pigs. The combination of these elements recovered the high-virulent Margarita phenotype. These results show that CSFV evolution towards attenuated variants in the field involved mutations in both structural and non-structural proteins and the UTRs, which act synergistically to determine virulence.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Animais , Suínos , Virulência/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/química , Mutação
18.
Vet Microbiol ; 288: 109931, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056181

RESUMO

Since late 2011, the PRV variants have emerged in China, characterized by the increased virulence. The traditional attenuated vaccines have proven insufficient in providing complete protection, resulting in substantial economic losses to swine industry. In this study, a vaccine candidate strain, ZJ01-ΔgI/gE/TK/UL21, carrying the quadruple gene deletion was derived from the previously generated three gene-deleted virus ZJ01-ΔgI/gE/TK. As anticipated, piglets inoculated with ZJ01-ΔgI/gE/TK/UL21 exhibited normal body temperatures and showed no viral shedding, consistent with the observations from piglets treated with ZJ01-ΔgI/gE/TK. Importantly, a significant higher level of interferon induction was observed among piglets in the ZJ01-ΔgI/gE/TK/UL21 group compared to those in the ZJ01-ΔgI/gE/TK group. Upon challenge with the PRV variant ZJ01, piglets immunized with ZJ01-ΔgI/gE/TK/UL21 exhibited reduced viral shedding compared to the ZJ01-ΔgI/gE/TK group. Furthermore, piglets vaccinated with ZJ01-ΔgI/gE/TK/UL21 exhibited minimal pathological lesions in brain tissues, similar to those in the ZJ01-ΔgI/gE/TK group. These results underscore the potential of ZJ01-ΔgI/gE/TK/UL21 as a promising vaccine for controlling PRV infection.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Suínos , Animais , Virulência , Proteínas do Envelope Viral/genética , Vacinas Atenuadas , Vacinas contra Pseudorraiva
19.
J Vet Med Sci ; 86(1): 120-127, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38030279

RESUMO

An approach to genetically engineered resistance to pseudorabies virus (PRV) infection was examined by using a mouse model with defined point mutation in primary receptor for alphaherpesviruses, nectin-1, by the CRISPR/Cas9 system. It has become clear that phenylalanine at position 129 of nectin-1 is important for binding to viral glycoprotein D (gD), and mutation of phenylalanine 129 to alanine (F129A) prevents nectin-1 binding to gD and virus entry in vitro. Here, to assess the antiviral potential of the single amino acid mutation of nectin-1, F129A, in vivo, we generated genome-edited mutant mouse lines; F129A and 135 knockout (KO). The latter, 135 KO used as a nectin-1 knockout line for comparison, expresses a carboxy-terminal deleted polypeptide consisting of 135 amino acids without phenylalanine 129. In the challenge with 10 LD50 PRV via intranasal route, perfect protection of disease onset was induced by expression of the mutation of nectin-1, F129A (survival rate: 100% in F129A and 135 KO versus 0% in wild type mice). Neither viral DNA/antigens nor pathological changes were detected in F129A, suggesting that viral entry was prevented at the primary site in natural infection. In the challenge with 50 LD50 PRV, lower but still strong protective effect against disease onset was observed (survival rate: 57% in F129A and 75% in 135 KO versus 0% in wild type mice). The present results indicate that single amino acid mutation of nectin-1 F129A provides significant resistance against lethal pseudorabies.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Camundongos , Aminoácidos/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Mutação , Nectinas/genética , Nectinas/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Pseudorraiva/prevenção & controle , Proteínas do Envelope Viral/genética
20.
Virology ; 589: 109916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925791

RESUMO

Cross-neutralizing aptamers targeting both HSV-1 and HSV-2 were developed by selecting against the ectodomains of glycoprotein D (gD) from both viruses in parallel as well as sequentially using the SELEX method. Since gD facilitates viral invasion, sterically blocking the host-receptor interaction prevents infection. Candidate aptamers were screened, and lead aptamers were identified that exhibited exceptional neutralizing activity against both viruses in vitro. The specificity of the aptamers was confirmed by comparing their activity to scrambled versions of themselves. Modifications of the lead compounds were tested to define critical motifs to guide development. Stability of the aptamers was increased using phosphorothioate backbone linkages, and 2' methoxy substitutions of terminal and key internal bases. Aptamers were applied in a guinea pig vaginal HSV-2 infection model and found to reduce both the viral load of infected animals and the severity of the resulting disease. These results suggest that cross-neutralizing aptamers can be developed into on-demand antiviral interventions effective against both HSV-1 and HSV-2.


Assuntos
Aptâmeros de Nucleotídeos , Herpesvirus Humano 1 , Feminino , Animais , Cobaias , Herpesvirus Humano 2/genética , Herpesvirus Humano 1/genética , Proteínas do Envelope Viral/genética , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...